1. Chloroethene, CH₂=CHCl, is prepared in the presence of a solid catalyst using the equilibrium reaction below. $$CH_2ClCH_2Cl(g) \rightleftharpoons CH_2=CHCl(g) + HCl(g)$$ $\Delta H = +51 \text{ kJ mol}^{-1}$ Which change would result in an increased equilibrium yield of chloroethene? - **A** increasing the pressure - **B** increasing the surface area of the catalyst - **C** increasing the temperature - **D** use of a homogeneous catalyst | Your answer | | |-------------|--| | | | [1] ### PhysicsAndMathsTutor.com # OCR (A) Chemistry A-Level - Chemical Equilibrium | 2. | Which statement(s) is/are correct when a catalyst is added to a system in dynamic equilibrium? | | | 1? | |-----------------------|--|------|---|----| | | | 1 | The rates of the forward and reverse reactions increase by the same amount. | | | | | 2 | The concentrations of the reactants and products do not change. | | | | | 3 | The value of K_c increases. | | | | Α | 1, 2 | and 3 | | | | В | Onl | y 1 and 2 | | | | С | Onl | y 2 and 3 | | | | D | Onl | y 1 | | | D Only 1 Your answer | | [1] | | | © OCR 2020 Turn over [2] # OCR (A) Chemistry A-Level - Chemical Equilibrium | sho | wn in equilibrium 1 . | | | | |-----|---|--|-----------------------------------|--| | СО | $(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ | $\Delta H = -91 \mathrm{kJ} \mathrm{mol}^{-1}$ | Equilibrium 1 | | | (a) | Predict the conditions of pressure and temperature that would give the maximum equilibrium 1. | | | | | | Explain your answer. | [3 | | | (b) | A catalyst is used in the production | n of methanol in equilib | rium 1. | | | | State two ways that the use of camore sustainable and less harmfu | | companies to make their processes | | | | 1 | | | | | | | | | | | | 2 | | | | Methanol, CH₃OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as # OCR (A) Chemistry A-Level - Chemical Equilibrium (c) Standard entropy values are given below. | Substance | CO(g) | H ₂ (g) | CH ₃ OH(g) | |--|-------|--------------------|-----------------------| | S ^e /JK ⁻¹ mol ⁻¹ | 198 | 131 | 238 | | | A chemist proposed producing methanol at 525 K using equilibrium 1 . | | | | |-----|---|--|--|--| | | Explain, with a calculation, whether the production of methanol is feasible at 525 K. | [5] | | | | | (d) | At 298 K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is $-2.48 \times 10^4 \mathrm{J} \mathrm{mol}^{-1}$. | | | | | | ΔG is linked to $K_{\rm p}$ by the relationship: $\Delta G = -RT \ln K_{\rm p}$. | | | | | | R = gas constant T = temperature in K. | | | | | | Calculate $K_{\rm p}$ for equilibrium 1 at 298 K. | | | | | | Give your answer to 3 significant figures. | | | | ### OCR (A) Chemistry A-Level - Chemical Equilibrium **4.** The equilibrium constant K_p and temperature T (in K) are linked by the mathematical relationship shown in **equation 5.1** (R = Gas constant in Jmol⁻¹ K⁻¹ and ΔH is enthalpy change in Jmol⁻¹). $$ln K_p = -\frac{\Delta H}{R} \times \frac{1}{T} + \frac{\Delta S}{R}$$ Equation 5.1 Give your answer to 3 significant figures. (a) The table shows the values of $K_{\rm p}$ at different temperatures for an equilibrium. Complete the table by adding the missing values of $\frac{1}{T}$ and $\ln K_{\rm p}$. | Temperature, T/K | 400 | 500 | 600 | 700 | 800 | |---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | K _p | 3.00 × 10 ⁵⁸ | 5.86 × 10 ⁴⁵ | 1.83 × 10 ³⁷ | 1.46 × 10 ³¹ | 1.14 × 10 ²⁶ | | $\frac{1}{T}$ / K ⁻¹ | 2.50 × 10 ⁻³ | | | | | | In K _p | 135 | | | | | [2] | (b) | State and explain how increasing the temperature affects the position of this equilibrium and whether the forward reaction is exothermic or endothermic. | | | |-----|--|--|--| | | | | | | | | | | | | [1] | | | | (c) | Plot a graph of $\ln K_p$ against $\frac{1}{T}$ using the axes provided on the opposite page. | | | | | Use your graph and equation 5.1 to determine ΔH , in kJ mol ⁻¹ , for this equilibrium. | | | | | $\Delta H = \dots$ | kJ mol ⁻¹ [4 | |-----|--|--------------------------------| | (d) | Explain how ΔS could be calculated from a graph of $\ln K_p$ against $\frac{1}{T}$. | | | | | | | | | |