1. Chloroethene, CH₂=CHCl, is prepared in the presence of a solid catalyst using the equilibrium reaction below.

$$CH_2ClCH_2Cl(g) \rightleftharpoons CH_2=CHCl(g) + HCl(g)$$
 $\Delta H = +51 \text{ kJ mol}^{-1}$

Which change would result in an increased equilibrium yield of chloroethene?

- **A** increasing the pressure
- **B** increasing the surface area of the catalyst
- **C** increasing the temperature
- **D** use of a homogeneous catalyst

Your answer	

[1]

PhysicsAndMathsTutor.com

OCR (A) Chemistry A-Level - Chemical Equilibrium

2.	Which statement(s) is/are correct when a catalyst is added to a system in dynamic equilibrium?			1?
		1	The rates of the forward and reverse reactions increase by the same amount.	
		2	The concentrations of the reactants and products do not change.	
		3	The value of K_c increases.	
	Α	1, 2	and 3	
	В	Onl	y 1 and 2	
	С	Onl	y 2 and 3	
	D	Onl	y 1	
D Only 1 Your answer		[1]		

© OCR 2020 Turn over

[2]

OCR (A) Chemistry A-Level - Chemical Equilibrium

sho	wn in equilibrium 1 .			
СО	$(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	$\Delta H = -91 \mathrm{kJ} \mathrm{mol}^{-1}$	Equilibrium 1	
(a)	Predict the conditions of pressure and temperature that would give the maximum equilibrium 1.			
	Explain your answer.			
			[3	
(b)	A catalyst is used in the production	n of methanol in equilib	rium 1.	
	State two ways that the use of camore sustainable and less harmfu		companies to make their processes	
	1			
	2			

Methanol, CH₃OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as

OCR (A) Chemistry A-Level - Chemical Equilibrium

(c) Standard entropy values are given below.

Substance	CO(g)	H ₂ (g)	CH ₃ OH(g)
S ^e /JK ⁻¹ mol ⁻¹	198	131	238

	A chemist proposed producing methanol at 525 K using equilibrium 1 .			
	Explain, with a calculation, whether the production of methanol is feasible at 525 K.			
	[5]			
(d)	At 298 K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is $-2.48 \times 10^4 \mathrm{J} \mathrm{mol}^{-1}$.			
	ΔG is linked to $K_{\rm p}$ by the relationship: $\Delta G = -RT \ln K_{\rm p}$.			
	R = gas constant T = temperature in K.			
	Calculate $K_{\rm p}$ for equilibrium 1 at 298 K.			
	Give your answer to 3 significant figures.			

OCR (A) Chemistry A-Level - Chemical Equilibrium

4. The equilibrium constant K_p and temperature T (in K) are linked by the mathematical relationship shown in **equation 5.1** (R = Gas constant in Jmol⁻¹ K⁻¹ and ΔH is enthalpy change in Jmol⁻¹).

$$ln K_p = -\frac{\Delta H}{R} \times \frac{1}{T} + \frac{\Delta S}{R}$$
 Equation 5.1

Give your answer to 3 significant figures.

(a) The table shows the values of $K_{\rm p}$ at different temperatures for an equilibrium.

Complete the table by adding the missing values of $\frac{1}{T}$ and $\ln K_{\rm p}$.

Temperature, T/K	400	500	600	700	800
K _p	3.00 × 10 ⁵⁸	5.86 × 10 ⁴⁵	1.83 × 10 ³⁷	1.46 × 10 ³¹	1.14 × 10 ²⁶
$\frac{1}{T}$ / K ⁻¹	2.50 × 10 ⁻³				
In K _p	135				

[2]

(b)	State and explain how increasing the temperature affects the position of this equilibrium and whether the forward reaction is exothermic or endothermic.		
	[1]		
(c)	Plot a graph of $\ln K_p$ against $\frac{1}{T}$ using the axes provided on the opposite page.		
	Use your graph and equation 5.1 to determine ΔH , in kJ mol ⁻¹ , for this equilibrium.		

	$\Delta H = \dots$	kJ mol ⁻¹ [4
(d)	Explain how ΔS could be calculated from a graph of $\ln K_p$ against $\frac{1}{T}$.	

